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We report a noise-memory induced phase transition in an array of oscillatory neural systems, which leads to
the suppression of synchronous oscillations and restoration of excitable dynamics. This phenomenon is caused
by the systematic contributions of temporally correlated parametric noise, i.e., possessing a memory, which
stabilizes a deterministically unstable fixed point. Changing the noise correlation time, a reentrant phase
transition to noise-induced excitability is observed in a globally coupled array. Since noise-induced excitability
implies the restoration of the ability to transmit information, associated spatiotemporal patterns are observed
afterwards. Furthermore, an analytic approach to predict the systematic effects of exponentially correlated
noise is presented and its results are compared with the simulations.
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Pathological cerebral synchronization is able to perturb
normal brain functions. This behavior plays an important
role for some neural diseases such as Parkinson’s disease or
essential tremors �1�. In this context, it is important to find
methods to suppress undesirable global oscillations in neural
networks. Several techniques to achieve this have been re-
ported, for example, high-frequency stimulation �2�, phase
resetting methods �1�, or a delay-induced desynchronization
�3�. A different method, which leads not only to the suppres-
sion of these unwanted dynamics, but also to restoration of
excitable neural properties has been presented in �4�, where
multiplicative noise was used to stabilize the deterministi-
cally unstable fixed point of the local dynamics in an array of
oscillatory systems. This noise-induced excitability �NIE�
has been reported using FitzHugh-Nagumo �FHN� systems
�5,6� with multiplicative white noise.

Increasing experimental evidence has established in re-
cent years that noise memory can be important for neural
communication and control of neural activity �e.g. �7,8��.
Temporally correlated noise is supposed to be present in neu-
ral ensembles due to an intrinsic stochasticity of ion channels
and other bioelectrical neural cell elements as well as due to
the stochasticity of underlying synaptic communications
�e.g., �9��. Massive spike trains received by cortical neurons
effectively lead to correlated noise input, due to the low-pass
frequency filtering effect of the synaptic dynamics �10–12�.

In theory structured noise is also of great interest. Spa-
tiotemporally correlated noise has interesting effects on pat-
tern formation in excitable systems �13� and on the lifetime
of scroll rings �14�. A transition to excitability in the pres-
ence of structured noise is reported in �15�. It is worth noting
that, this noise-induced transition occurs not from the oscil-
latory regime, and the noise does not suppress the regular
dynamics of the system. Furthermore the ability of correlated

noise to induce a transition from random turbulence to regu-
lar waves was demonstrated in �16�.

In our work, in contrast to �4�, the noise is assumed to be
structured in time, which leads to a new phenomenon. It is
shown that noise memory can induce a reentrant phase tran-
sition that enhances the system’s stability and restores an
excitability, while preserving the overall phase-space struc-
ture. To demonstrate this noise-memory induced excitability
�NMIE� an array of coupled oscillatory FHN systems under
the influence of the multiplicative noise is studied.

Neurons with multiplicative responses are powerful com-
putational elements in neural networks �17�. Multiplicative
responses of a neural network stands for external parametric
treatment or for internal communication responses reported,
e.g., in the insect visual system �18�, parietal cortex �19�, or
the superior colliculus �20�. Surprisingly, additional noise
memory is critical for NMIE and leads to more disorder in
the system, similarly to noise-induced phase transitions, as
reported in �21,22�. To clarify if the growing correlation in
time perturbs the effect of noise-suppressed dynamics, nu-
merical simulations are performed with different correlation
times. Finally, it is shown that noise memory is essential for
the information transmission and pattern formation in this
system. The simulations of NMIE are supported analytically
by a small noise expansion �SNE� �23� with corrections for
the temporally colored noise �24�.

The system under consideration is an array of N�N
coupled FHN systems in the presence of the parametric mul-
tiplicative noise �ij�t�

u̇ij =
1

�
�uij�1 − uij��uij − a� − vij + du� + quKij ,

v̇ij = uij − c�1 + �ij�vij , �1�

where Kij and qu denote the coupling function and strength,
respectively. In this minimal model of neural dynamics uij�t�
represents the fast relaxing membrane potential, while vij�t�
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denotes the slow ion recovery variable, with the time scales
being separated by the small parameter �=0.01. The time is
specified in time units �t.u.�, which accord approximately
with the oscillation period of the net. The equations are in-
tegrated on a discrete spatiotemporal grid using the Heun
method ��t=0.001 t.u.� �23� and the forward time centered
space scheme ��h=1.0� in time and space, respectively. The
grid points are labeled by the indices 1� i , j�N. Throughout
this paper the following set of parameters is used �a ,c ,du�
= �0.5,4.6,0.1�, while varying the coupling strength qu and
the noise input �ij. For �ij�t�=0, each FHN system performs
autonomous limit cycle oscillations, yielding a synchronized
output in the case of qu�0 and appropriate initial conditions.

The term �ij�t� is taken to be zero mean, spatially inco-
herent Gaussian noise of Ornstein-Uhlenbeck type with the
correlation

��ij�t��kl�t��� =
�

	

ij,kl exp�− �t − t��	−1� , �2�

where 	 and � denote the correlation time and the noise
intensity, respectively �13,23�. This stochastic process fulfills
the equation

��ij�t�
�t

= −
1

	
�ij�t� +

1

	
�ij�t� , �3�

where �ij�t� is white Gaussian noise with ��ij�t��kl�t���
=2�
ij,kl
�t− t��. The prefactor in Eq. �2� defines the noise
variance of the Ornstein-Uhlenbeck noise �2=� /	. In the
following � is denoted as noise strength. We believe, that for
comparison with experimental systems the noise variance �2

is the relevant parameter, because for fixed �2 the total
power of the noise is conserved. For that reason our theoret-
ical and numerical studies are implemented with fixed � and
hence fixed �2.

A small noise expansion is used in order to predict the
systematic effect of the parametric fluctuations on the system
behavior �23�. For the case of a stochastic differential equa-
tion ẋ�t�= f(x�t�)+g(x�t�)��t�, the first order of the expansion
reads

ẋ0�t� = f„x0�t�… + �g„x0�t�…��t��t, �4�

where the temporal mean can be evaluated using Novikov‘s
theorem �25�

�g„x�t�…��t�� = �
0

t

dt��2 exp�− �t − t��	−1�	g�„x�t�…

x�t�


��t��
 .

�5�

It is possible to obtain an analytical approximation for the
individual system’s response to the noise in the limit of
short-memory stochastic forcing using a Taylor expansion
with respect to time �24�. One obtains


x�t�

��t��

� g„x�t�… + g2
„x�t�…� f„x�t�…

g„x�t�…
�t� − t�
 , �6�

which leads to the final expression for the SNE up to first
order

ẋ0�t� � f„x0�t�… + �2g�„x0�t�…g„x0�t�…�	 + g„x0�t�…

�� f„x0�t�…
g„x0�t�…


�
	2� . �7�

This new combination of known results leads to a useful tool
to predict deterministic effects of structured multiplicative
noise of Ornstein-Uhlenbeck type, as will be demonstrated
for the FHN system in the following.

While the assumptions of the SNE strictly hold for an
individual system, only, the analysis is also valid for strongly
coupled networks of oscillators. The systematic effect of the
parametric forcing already appears on the level of the indi-
vidual oscillator, while the role of coupling is to dampen
short-term local fluctuations, this way establishing the re-
spective noise-induced dynamic regimes. With these prereq-
uisites in mind, the estimation of Eq. �1� up to the first order,
using Eq. �7�, reads

u̇ij =
1

�
�uij�uij − 1��a − uij� − vij + du� + quKij ,

v̇ij = uij − cvij + �2c2�vij	 − uij	
2� . �8�

The predicted deterministic effect of increasing multipli-
cative noise on the single, uncoupled system for 	
=0.01 t.u. is depicted in Fig. 1. In the absence of noise ��
=0�, the system is oscillatory and the trajectory follows a
limit cycle. Increasing the noise strength for small 	 tilts the
linear nullcline to the left according to

FIG. 1. �a� Nullclines in phase space �u ,v� for
noisy FHN system �Eq. �8��. �· ·� �=0.0, �– · –�
�=1.5, �– –� �=3.0. �b� mean field trajectories
for Eq. �1� with global coupling �Eq. �11�� for
N=50,qu=50. �· ·� �=0.0, �—� �=1.5. Other pa-
rameters: 	=0.01 t.u.
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v�u� =
�2c2	2 − 1

�2c2	 − c
u = mu , �9�

which causes the unstable fixed point to move towards the
stable branch of the cubic nullcline �Fig. 1�a��. Using this
result one finds the following relation between the noise
strength �, the slope of the linear nullcline m, and the noise-
memory 	

��	,m� =
1

c
� 1 − cm

	�	 − m�
. �10�

For a slope m
0.224 the fixed point becomes stable, thus
according to Eq. �10� noise amplitudes �
� fi�	=0.01�
�0.82 are required to suppress the oscillatory dynamics.
Consequently the oscillations in the globally coupled array
can be suppressed using parametric noise �Fig. 1�b��. For
�st�	=0.01�= �c	�−1/2�4.66 the linear nullcline of Eq. �8� is
vertical, while for ���st the former stable fixed point be-
comes unstable once more.

Next, we consider a globally coupled array of FHN sys-
tems �Eq. �1�� with coupling function defined as

Kij = ū − uij , �11�

where ū denotes the mean value of the fast variable for all
systems �mean field�. To show the existence of NMIE in a
globally coupled array, we calculate the relative resting time
�RRT� of all systems in a confined phase-space area close to
the fixed point �uij �0.35 and vij �0.1�. The array is as-
sumed to display NMIE, if RRT�0.98 �4�.

The RRT for Eq. �1� with global coupling is plotted in
Fig. 2. Obviously, a minimum coupling strength qu�24 is
necessary to bind the mean field to the noise-induced stable
fixed points �Fig. 2�a��, i.e., to establish NMIE. Furthermore,
the border noise strength �� fi� between the oscillatory and
NMIE regime, is monotonously decreasing with growing
coupling strength qu approaching the value predicted from
Eq. �10�. Similarly, a minimum system size N�10 is re-
quired to observe NMIE �Fig. 2�b��. Interestingly, � fi shows
a resonant behavior with the system size, being minimal for
N�30. These results clearly show that NMIE is a collective
behavior. In a single noisy FHN system the fluctuations
dominate the systematic noise effects �Eq. �8��, while these
fluctuations can be minimized using large arrays of such sys-
tems and strong coupling.

The upper boundary of the NMIE regime ��ub� is estab-
lished by the fact that an increasing noise strength leads to a
shift of the fixed point towards larger values of the v variable
as well as to larger overall fluctuations, resulting in an effec-
tive decrease of the RRT with �. For noise intensities greater
than �st�	�, the numerical integration becomes unstable as a
consequence of the change of stability of the fixed point, as
predicted from Eq. �8�.

Varying the noise memory, one observes a growing dis-
turbance of the transition to NMIE with increasing noise
memory. From Fig. 3�a� one finds NMIE in the full examined
range of 	. Increasing the noise memory results in a shift of
the NMIE regime towards smaller values of �. Surprisingly,
increasing the correlation time 	 of the noise leads to the
decrease of the area in which oscillations are suppressed,
similarly to noise-induced phase transitions via short time
instability �21,22�. This renders NMIE a much different phe-
nomenon as compared to asynchronous oscillation suppres-
sion, widely known in the theory of oscillations �26�. The
corresponding trajectories of the mean field, which illustrate
the change of the order parameter RRT on the noise memory,
are shown in Figs. 3�b�–3�e�. First, oscillations are sup-
pressed by noise, giving rise to NMIE �Fig. 3�c��. Increasing
the noise memory further results in large fluctuations of the v
variable, destroying the �-associated NMIE regime �Figs.
3�d� and 3�e��.

FIG. 2. Boundaries of NMIE for Eq. �1� with global coupling
�Eq. �11��. �a� coupling strength qu vs noise strength � ,N=50. �b�
system size N vs noise strength � ,qu=50. Contour lines: �– · · –�
RRT=0.97, �– · –� RRT=0.98, �– – –� RRT=0.99. Other param-
eters: 	=0.01 t.u.

FIG. 3. �a� boundaries of NMIE for Eq. �1� with global coupling
�Eq. �11�� as a function of the noise strength � and correlation time
	 , N=50, qu=50. �¯� marks �=0.6. �b�–�e� trajectories in phase
space �u ,v�, associated with crosses in �a�, at �=0.6, �b� 	
=0.01 t.u., �c� 	=0.03 t.u., �d� 	=0.2 t.u., and �e� 	=0.5 t.u. �- – –�
cubic nullcline of Eq. �1�. The gray area in �a� marks the values of
	 and �, where the numerical integration with fixed �t becomes
unstable for ��	���st�	�.
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Comparing the analytical prediction �Eq. �10�� for �st�	�
from SNE �Eq. �8�� with the numerical results shows excel-
lent agreement for the whole range of noise memory �Fig.
4�a��. The monotonous decrease of �st with 	 also explains
the shift of the numerically intractable parameter region of
NMIE towards smaller noise strengths with increasing noise
memory in Fig. 3�a�. The predictions of � fi�	� from the SNE
approximation and the numerical solutions, however, diverge
for weak coupling �qu�40� and large 	
0.1 t.u. �Fig. 4�b��.
Once again, these results reflect the fact that NMIE is a col-
lective phenomenon and, moreover, that a higher order Tay-
lor expansion for the derivation of the SNE is needed to
account for long-range noise-memory effects in the stochas-
tic dynamics.

In order to study the pattern formation and the signal
transmission through the array, the function Kij in Eq. �1� is
chosen as diffusive nearest-neighbor coupling with periodic
boundary conditions, using a nine-point Laplacian for radial
symmetry

Kij = �2uij ,

�2uij = 1
6 �ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1

+ 4�ui+1,j + ui−1,j + ui,j+1 + ui,j−1� − 20ui,j� . �12�

Three different pattern forming regimes are expected to
appear with increasing noise strength. For ��	��� fi�	�, the
array elements oscillate, while for � fi�	����	���ub�	�, the
excitable dynamics of each element are predominant in the
NIE regime and typical spatiotemporal patterns such as spi-
ral waves appear. Finally, for �ub�	����	���st�	�, a noise-
induced subexcitable regime �NMISE� is reached, in which
spatiotemporal patterns are no longer supported and any ini-
tial excitation dies out for t→�. Figure 5 depicts the numeri-
cal simulation results for a diffusively coupled array. For �
=0.6 global oscillations are observed, which become ever
more synchronized over time due to the spatial coupling
�Fig. 5�a��. For �=1.25, the system is in the NMIE regime
and excitable dynamics prevail, as visible from the spatial
structures �Fig. 5�b��. Increasing the noise strength restores
the excitability of the individual array elements and helps
information transmission �see also other mechanisms of
noise-increased information transmission �27,28��. Conse-
quently, the array approaches a global attractor most of the
time, if starting from random initial conditions �Fig. 5�c��.
Nevertheless, spiral waves are still fully supported, if appro-
priate initial conditions are chosen �Fig. 5�d��. For �=2.1 the
NMISE regime is reached, and spatial patterns die out re-
gardless of the initial conditions �Fig. 5�e��.

Snapshots of the diffusively coupled array for increasing
noise strength and memory are presented in Fig. 6. Clearly,

FIG. 5. Snapshots of u�t� for Eq. �1� with diffusive coupling
�Eq. �12��. �a�–�c� random initial conditions; �d� and �e� initial con-
ditions induce two spiral waves in an excitable system. Other pa-
rameters: N=256, qu=50, 	=0.01 t.u.

FIG. 6. Snapshots of u�t� for Eq. �1� with diffusive coupling
�Eq. �12�� taken at t=10.0 t.u. Simulations started with random ini-
tial conditions. Other parameters: N=256, qu=50.

FIG. 4. Comparison of critical noise strengths
from SNE �Eq. �8�� �– – –� and simulation of Eq.
�1� with global coupling �Eq. �11��. �a� �st�	� at
qu=50. �b� � fi�	�: �¯� qu=25, �—� qu=50. �—�,
�¯� connect the numerical results. Other param-
eters: N=50.
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the occurring types of spatiotemporal patterns are the same
in the examined range of 	. However, the onset of the struc-
ture forming NMIE regimes is shifted to smaller noise
strengths with increasing 	, quite in agreement with the re-
sults from the globally coupled array. The visual impression
from Fig. 6 is summarized in Fig. 7�a�. There, the various
dynamic regimes have been systematically analyzed from the
observed spatiotemporal patterns. The expected monotonous
decrease of � fi�	� ,�ub�	�, and �st�	� with 	 is clearly visible.
The NMIE region corresponds perfectly with the one for the
globally coupled array from Fig. 3.

The monotonous decrease of the various dynamical re-
gimes towards smaller noise strengths � with increasing
noise-memory 	 can be understood qualitatively in terms of
the frequency-response matching between the stochastic
forcing and the intrinsic time scale individual FHN system.
The total power of the noise depends on the noise strength �,
whereas the power spectral density �PSD� obviously depends
on the noise-memory 	. Increasing the latter leads to an ever
increasing correlation between the PSD of the noise and the
frequency response of the FHN systems, thus resulting in the
observed dependence of the transitions to NMIE with 	.

For the sake of completeness, Fig. 7�b� shows the border
between the oscillatory regime and NMIE as a function of
the noise intensity �. Numerical evidence suggests that the
border depends on 	, as is clearly visible for 	
0.1 t.u. For
smaller values of the correlation time the observed depen-
dence is in good agreement with the analytical approxima-
tion from Eq. �10�, but is not strongly pronounced. For 	
�0.01 t.u. the border becomes a horizontal line and con-
verges against the white noise result.

In summary, it has been shown that noise memory induces
reentrant phase transitions from oscillations to excitability in
a global coupled array of FHN systems with parametric time

correlated noise. This transition is stable for a wide param-
eter range of noise correlation times. In contrast to other
suppression techniques, spatial coupling is absolutely essen-
tial in this case, in order to prevent noise-driven oscillations
from exciting the system and converting it back in an oscil-
lator. Using a nonstandard SNE the observed effects have
been successfully approximated even for temporally corre-
lated noise, providing good predictions for the observed sys-
tem for not too large noise memory.

Applying diffusive coupling, the NMIE regime was found
in the expected range of ��	� and the corresponding spa-
tiotemporal patterns were observed. Increasing the noise
strength shifts the system’s dynamics from the oscillatory to
the excitable regime, thus allowing for pattern formation and
subsequent information transmission at intermediate � and 	.
Furthermore, the existence of a NMISE regime was proved
for �ub�	����	���st�	�. It has been demonstrated that op-
timal memory of the noise is essential to observe spiral pat-
tern formation, as the phase boundaries of the NMIE and
NMISE regimes crucially depend on the noise correlation
time.

NMIE was studied using the paradigmatic FHN model in
a rather general framework. We hope that these theoretical
findings will not only contribute to the theory of extended
systems with noise �23� but also help to develop new strate-
gies to suppress malfunction neural oscillations, restore the
functionality of neural networks, as well as to understand the
functionality of coupled neurons that form multiplicative
representations in evolutionary adapted systems, including
previously reported examples in the superior colliculus �20�,
the lateral intraparietal area �19�, or the insect visual system
�18�.
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